2018 - 3

6. limited memory graio newton

牛顿方法需要计算$ hessian $矩阵和其逆,为方便计算和减少内存使用,使用L_BFGS算法优化.

最大墒模型:

$$ \begin{align} p(y|x) &= \frac{\exp \left[ \sum_{i=1} w_i f_i(x,y) \right] }{ Z_w(x) } \\ &= \frac{ \exp \left[ \sum_{i=1} w_i f_i(x,y) \right] }{ \sum_y \exp \left[ \sum_{i=1} w_i f_i(x,y) \right] } \end{align} $$

目标优化函数:

$$ \begin{align} \min_w f(w) &= -\sum_{x,y} \tilde{p}(x,y) \log p(y|x) \\ &= \sum_{x} \tilde{p}(x) \log Z_w(x) - \sum_{x,y} \tilde{p}(x,y) \sum_{i=1} w_i f_i(x,y) \end{align} $$

梯度:
$$ \nabla f(w) = \left[\frac{\partial f(w)}{\partial w_1},\frac{\partial f(w)}{\partial w_2},\frac{\partial f(w)}{\partial w_3},\cdots \right]^T $$

$$ \frac{\partial f(w)}{\partial w_i} = \sum_{x,y} \tilde{p}(x) p_w(y|x) f_i(x,y) - \sum_{x,y} \tilde{p}(x,y) f_i(x,y) $$

- 阅读剩余部分 -